中文 / English

Highlights

(33)Lin, Z.; Sathishkumar, N.; Xia, Y.; Li, S.; Liu, X.; Mao, J.; Shi, H.; Lu, G.; Wang, T.; Wang, H.-L.; Huang, Y.; Elbaz, L.; Li, Q. Angewandte Chemie International Edition n/a, (n/a), e202400751.
(32)Liu, J.; Wang, T.; Lin, Z.; Liao, M.; Liu, S.; Wang, S.; Cai, Z.; Sun, H.; Shen, Y.; Huang, Y.; Li, Q., Single-atom Co dispersed on polyoxometalate derivatives confined in bamboo-like carbon nanotubes enabling effic. Energy & Environmental Science 2024.
(31) Liu, X.; Wang, Y.; Liang, J.; Li, S.; Zhang, S.; Su, D.; Cai, Z.; Huang, Y.; Elbaz, L.; Li, Q., Introducing Electron Buffers into Intermetallic Pt Alloys against Surface Polarization for High-Performing Fuel Cells. J. Am. Chem. Soc. 2024, 146, 2033–2042.
(30) Liu, S.; Wang, T.*; Liu, X.; Liu, J.; Shi, H.; Lai, J.; Liang, J.; Li, S.; Cai, Z.; Huang, Y.; Li, Q.*, In Situ Dissociated Chalcogenide Anions Regulate the Bi-Catalyst/Electrolyte Interface with Accelerated Surface Reconstruction toward Efficient CO2 Reduction. ACS Catal. 2024, 14, 489-497.
(29) Lai, J.; Chen, S.; Liu, X.; Yan, X.; Qin, Z.; Xie, L.; Lin, Z.; Cai, Z.; Zhao, Y.; Wang, H.-L.*; Huang, Y.; Li, Q.*, Synergy between Intermetallic Pt Alloy and Porous Co–N4 Carbon Nanofibers Enables Durable Fuel Cells with Low Mass Transport Resistance. ACS Catal. 2023, 13, 11996-12006
(28) Shi, H.; Wang, T.*; Liu, J.; Chen, W.; Li, S.; Liang, J.; Liu, S.; Liu, X.; Cai, Z.; Wang, C.; Su, D.; Huang, Y.; Elbaz, L.; Li, Q.*, A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis. Nat. Commun. 2023, 14 (1), 3934.
(27)Liu, X.; Zhao, Z.; Liang, J.; Li, S.; Lu, G.; Priest, C.; Wang, T.; Han, J.; Wu, G.; Wang, X.; Huang, Y.; Li, Q.*, Inducing Covalent Atomic Interaction in Intermetallic Pt Alloy Nanocatalysts for High-Performance Fuel Cells. Angew. Chem. Int. Ed. 2023, 62, e202302134.
(26)Liu, J.; Wang, T.*; Liu, X.; Shi, H.; Li, S.; Xie, L.; Cai, Z.; Han, J.; Huang, Y.; Wang, G.;Li, Q.*, Reducible Co3+–O Sites of Co–Ni–P–Ox on CeO2 Nanorods Boost Acidic Water Oxidation via Interfacial Charge Transfer-Promoted Surface Reconstruction. ACS Catal. 2023, 5194-5204.
(25) Liu, J.; Duan, S.; Shi, H.; Wang, T.*; Yang, X.; Huang, Y.; Wu, G.*;Li, Q.*; Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angew. Chem. Int. Ed. 2022, 61, e202210753
(24)Miao, Z.; Li, S.; Priest, C.; Wang, T.; Wu, G.; Li, Q.* Effective Approaches for Designing Stable M-Nx/C Oxygen-Reduction Catalysts for Proton Exchange Membrane Fuel Cells. Adv. Mater. 2022, 2200595.
(23)Liu, J.; Liu, X.; Shi, H.; Luo, J.; Wang, L.; Liang, J.; Li, S.; Yang, L.-M.; Wang, T.; Huang, Y.; Li, Q.* Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl. Catal. B: Environ. 2022, 302, 120862.
(22)Miao, Z.; Wang, X.; Zhao, Z.; Zuo, W.; Chen, S.; Li, Z.; He, Y.; Liang, J.; Ma, F.; Wang, H.-L.; Lu, G.; Huang, Y.; Wu, G.; Li, Q.* Improving the Stability of Non-Noble-Metal M–N–C Catalysts for Proton-Exchange-Membrane Fuel Cells through M–N Bond Length and Coordination Regulation. Adv. Mater. 2021, 33, 2006613.
(21)Xie, H.; Wan, Y.; Wang, X.; Liang, J.; Lu, G.; Wang, T.; Chai, G.; Adli, N. M.; Priest, C.; Huang, Y.; Wu, G.; Li, Q.* Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Appl. Catal. B-Environ. 2021, 289, 119783.
(20) Ma, F.; Wan, Y.; Wang, X.; Wang, X.; Liang, J.; Miao, Z.; Wang, T.; Ma, C.; Lu, G.; Han, J.; Huang, Y.; Li, Q.* Bifunctional Atomically Dispersed Mo–N2/C Nanosheets Boost Lithium Sulfide Deposition/Decomposition for Stable Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 10115–10126.
(19) Liang, J.; Zhao, Z.; Li, N.; Wang, X.; Li, S.; Liu, X.; Wang, T.; Lu, G.; Wang, D.; Hwang, B.-J.; Huang, Y.; Su, D.; Li, Q.* Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L10-PtZn Fuel Cell Cathode. Adv. Energy Mater., 2020, 10, 2000179. (Highlighted in MaterialsViewsChina, https://www.materialsviewschina.com/2020/06/46692/)
(18) Liang, J. , Li, N. , Zhao, Z. , Ma, L. , Wang, X. , Li, S. , Liu, X. , Wang, T. , Du, Y. , Lu, g. , Han, J. , Huang, Y. , Su, D.* and Li, Q.*, Tungsten‐Doped L10‐PtCo Ultrasmall Nanoparticles as High‐Performance Fuel Cell Cathode. Angew. Chem. Int. Ed., 2019, 58, 15471.
(17) Liang, J. S.; Ma, F.; Hwang, S.; Wang, X. X.; Sokolowski, J.; Li, Q.*; Wu, G.*; Su, D.* Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis. Joule, 2019, 3, 956-991.
(16) Wang, T. Y.; Liang, J. S.; Zhao, Z. L.; Li, S. Z.; Lu, G.; Xia, Z. C.; Wang, C.; Luo, J. H.; Han, J. T.; Ma, C.*; Huang, Y. H.*; Li, Q.* Sub-6 nm Fully Ordered L10-Pt–Ni–Co Nanoparticles Enhance Oxygen Reduction via Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. Adv. Energy Mater., 2019, 9, 1803771.
(15) Miao, Z.P.; Wang, X.M.; Tsai M-.C.; Jin, Q.Q.; Liang, J.S.; Ma, F.; Wang, T.Y.; Zheng, S.J.; Hwang, B-.J.; Huang, Y.H.; Guo, S.J.*; Li, Q.*, Atomically Dispersed Fe‐Nx/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal‐Organic Polymer Supramolecule Strategy, Adv. Energy Mater., 2018, 8, 1801226.
(14) Xie, H.; Wang, T.Y.; Liang, J.S.; Li, Q.*; Sun, S.H.*, Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today, 2018, 21 41-54.
(13) Wang, T.Y.; Nam, G.; Jin, Y.; Wang, X.; Ren, P.; Kim, M.G.; Liang, J.; Wen, X.; Jang, H.; Han, J.; Huang, Y.; Li, Q.*; Cho, J. *, NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues, Adv. Mater., 2018, 21, 1800757.
(12) Wang, T.; Xie, H.; Chen, M.; Alyssa, D.; Cho, J*.; Wu, G*.; Li, Q.*, Precious Metal-free Approach to Hydrogen Electrocatalysis for Energy Conversion: from Mechanism Understanding to Catalyst Design, Nano Energy, 2017, 42, 69-89.
(11) Li, Q.*; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Xi, Z.; Wang, T.; Lu, G.; Zhu, J.; Sun, S.*, Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure, J. Am. Chem. Soc.2017, 139, 4290-4293. (ESI热点论文)
(10) Li, Q.; Sun, S., Recent Advances in the Organic Solution Phase Synthesis of Metal Nanoparticles and Their Electrocatalysis for Energy Conversion Reactions, Nano Energy, 2016, 29, 178-197.
(9) Li, Q.*; Zhu, W.; Fu, J.; Zhang, H.; Wu, G.; Sun, S.*, Controlled Assembly of Cu Nanoparticles on Pyridinic-N Rich Graphene for Electrochemical Reduction of CO2 to Ethylene, Nano Energy, 2016, 24, 1-9.
(8) Li, Q.; Wen, X.; Wu, G.; Chung, H. T.; Zenelay, P., High-Activity PtRuPd/C Catalyst for Direct Dimethyl Ether Fuel Cell, Angew. Chem. Int. Ed., 2015, 127, 7634-7638.
(7) Wu, L. H.†; Li, Q.†; Wu, C.; Zhu, H.; Garcia, A.; Shen, B.; Sun, S. H., Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction, J. Am. Chem. Soc., 2015, 137, 7071-7074. (†Equal contribution)
(6) Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H.; Zhang, S.; Zhu, W.; Zhu, H.; Sun, S. H., New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid, Nano Lett., 2015, 15, 2468-2473. (ESI highly cited paper)
(5) Li, Q.; Xu, P.; Gao, W.; Ma, S. G.; Zhang, G. Q.; Cao, R.G.; Cho, J.; Wang, H.L.; Wu, G., Graphene/Graphene Tube Nanocomposites Templated from Cage-Containing Metal-Organic Frameworks for Oxygen Reduction in Li-O2 Batteries, Adv. Mater., 2014, 26, 1378-1386. (ESI highly cited paper)
(4) Li, Q.; Cao, R.G.; Cho, J.; Wu, G., Nanocarbon Electrocatalysts for Oxygen-Reduction in Alkaline media for Advanced Energy Conversion and Storage, Adv. Energy Mater., 2014, 4, 1301415. (ESI highly cited paper)
(3) Li, Q.; Mahmood, N.; Hou, Y.; Sun, S. H., Graphene and Its Composites with Nanoparticles for Electrochemical Energy Applications, Nano Today, 2014, 9, 668–683. (ESI highly cited paper) (featured in Nano Today's website under Editors' Highlights)
(2) Li, Q.; Pan, H.; Higgins, D.; Cao, R.; Zhang, G.; Lv, H.; Wu, K.; Cho, J.; Wu, G., Metal-Organic Framework Derived Bamboo-like Nitrogen-Doped Graphene Tubes as an Active Matrix for Hybrid Oxygen-Reduction Electrocatalysts, Small, 2015, 11, 1443–1452. (ESI highly cited paper) (Highlighted in MaterialsViews: http://www.materialsviews.com/graphene-tubes-electrocatalysis/)
(1) Li, Q.; Wu, G.; Mack, N.; Chung, H.; Zelenay, P., Phosphate-Tolerant Oxygen Reduction Catalysts, ACS Catalysis, 2014, 4, 3193–3200. (ACS Editors' Choice)